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Motivation: the integer matrices

• Consider a set M of matrices. We would like to count the number of matrices in M with
a given rank, determinant, or characteristic polynomial.

• There have been a lot of works on the statistics of matrices in Mn(Z;H), the set of n × n
integer matrices with entries bounded by H in absolute value.

• Katznelson (1994) gave an asymptotic formula on the number of matrices in Mn(Z;H)
with a given rank.

• Katznelson (1993), Duke-Rudnick-Sarnak (1994), and Shparlinski (2010) gave bounds on
the number of matrices in Mn(Z;H) with a given determinant.

• Ostafe and Shparlinski (2022) bounded the number of matrices in Mn(Z;H) with a given
characteristic polynomial.

• We also have similar results on matrices over finite fields.
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From integer matrices to rational matrices

• A natural extension of this family of problems is to replace integer matrices with rational
matrices (of restricted height).

• We consider two different sets of rational numbers in our work,

F(H) = {a/b : a, b ∈ Z, 0 ≤ |a|, b ≤ H, gcd(a, b) = 1},
E(H) = {1/a : a ∈ Z, 1 ≤ |a| ≤ H}.

These are Farey fractions and Egyptian/unit fractions with height at most H.

• We note that their cardinalities satisfy

#F(H) ∼ 12

π2
H2, #E(H) ∼ 2H.
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Working with rational matrices

• Based on these sets, define

Mn(Q;H) =

{
A = (ai ,j)1≤i ,j≤n : ai ,j ∈ F(H), i , j = 1, . . . , n

}
as the set of n × n matrices whose entries are Farey fractions of height at most H.

• We also define Mn(Z−1;H) as the set of n × n matrices whose entries are Egyptian
fractions of height at most H.

• We note that

#Mn(Q;H) ∼
(
12

π2

)n2

H2n2 , #Mn(Z−1;H) ∼ (2H)n
2
.
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The problem over rational matrices

• We consider the problem of bounding the numbers of matrices in Mn(Q;H) and
Mn(Z−1;H) which have a given rank, determinant, or characteristic polynomial.

• Obstacle in working over rational numbers: Additions of two rational numbers of height H
can result in a number of height H2.

• Another obstacle: The sets F(H) and E(H) are not “discrete” and do not seem to yield to
methods of geometry of numbers (e.g. counting over lattices).

• We are only concerned about the order of magnitude in our bounds.

• We use the notation

U ≪ V ⇐⇒ V ≫ U ⇐⇒ |U| ≤ cV

for some positive constant c that only depends on the dimension n.

• We also write U = V o(1) if, for a fixed ε > 0, V−ε ≤ U ≤ V ε for sufficiently big V .
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Matrices with given rank

Let
Ln,r (A;H) = # {A ∈ Mn(A;H) : rankA = r} .

with A ∈ {Q,Z−1}. For the lower bound, we have

Ln,r (Q;H) ≫ H2nr , Ln,r (Z−1;H) ≫ Hnr

for matrices whose last n − r rows are identical to the first row.
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Matrices with given rank

For the case of integer matrices, Katznelson (1994) proved that Ln,r (Z;H) is asymptotically
cHnr logH, for some c > 0 not depending on H.

MA, Ostafe, Shparlinski (2023+)

For all n ≥ 2 and r ≥ 1,

Ln,r (Q;H) ≤ H r(3n−r−1)+n+o(1),

Ln,r (Z−1;H) ≤


Hn+o(1), r = 1,

H3n−2+o(1), r = 2,

H(n−r)(r+1)/2+rn+o(1), r ≥ 3.

We also have a version of this bound for m × n matrices.
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Sketch of the proof: given rank, Ln,r(A,H)

Consider a matrix A with entries in F(H) and rank r :(
Ar C1

Br C2

)
.

• We fix an invertible r × r matrix Ar in H2r2 ways.

• Key observation: each of the other rows of A can be represented as a unique linear
combination of the first r rows of A.

• We count the possible number of choices of the (n− r)× r matrix Br and r × (n− r) matrix
C1 based on the number t of nonzero coefficients of the corresponding linear combination.

• We will have a unique choice for the rest of the entries.
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Sketch of the proof: given rank, Ln,r(A,H)

• In particular, for bounding the number of choices for C1, we need to bound the number of
solutions of equations of the form

ρ1(h)a1,j + . . .+ ρr (h)ar ,j − ah,j = 0,

with t +1 nonzero coefficients ρi (h) and a1,j , . . . , ar ,j , ah,j ∈ F(H) for some indices h and j .

• We eventually have

Ln,r (Q;H) ≤ H2r2
r∑

t=1

H2t(n−r)(H2r−t+1+o(1))n−r ≤ H r(3n−r−1)+n+o(1).

• We apply similar arguments to bound Ln,r (Z−1;H).
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Matrices with given determinant

Let
Dn(A;H, δ) = {A ∈ Mn(A;H) : detA = δ}.

For the lower bound, we have

#Dn(Q;H, 0) ≫ H2n2−2n, #Dn(Z−1;H, 0) ≫ Hn2−n, #Dn(Q;H, 1) ≫ Hn2+o(1),

attained by matrices of the form


a1,1 . . . a1,n
...

. . .
...

an−1,1 . . . an−1,n

an−1,1 . . . an−1,n

 ,


p1/p2 a1,2 . . . a1.n−1 a1,n
0 p2/p3 . . . a2,n a2,n
...

...
. . .

...
...

0 0 . . . pn−1/pn an−1,n

0 0 . . . 0 pn/p1

 .

with pi primes in [1,H].
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Matrices with given determinant

For integer matrices, we have, from Shparlinski (2010),

#Dn(Z;H, δ) ≪ Hn2−n logH.

MA, Ostafe, Shparlinski (2023+)

For all n ≥ 2 and δ ∈ Q,

#Dn(Q;H, δ) ≤

{
H4+o(1), if n = 2,

H2n2−n+o(1), if n ≥ 3.

#Dn(Z−1;H, δ) ≤



Ho(1), if n = 2, δ ̸= 0,

H2+o(1), if n = 2, δ = 0,

H7+o(1), if n = 3,

Hn2−n/2−1/(2n−2)+o(1), if n ≥ 4, δ ̸= 0,

Hn2−n/2+o(1), if n ≥ 4, δ = 0.
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Sketch of the proof: given determinant, #Dn(A;H , δ)

For n = 2, we expand the equation directly. An example for #D2(Q;H, δ):∣∣∣∣a1/b1 a2/b2
a3/b3 a4/b4

∣∣∣∣ = r/s ⇐⇒ rb1b2b3b4 + sa2a3b1b4 = sa1a4b2b3.

We then fix some elements in the last equation and use the divisor bound (τ(n) ≪ no(1)) to
bound the number of choices for other variables.
For n ≥ 3 and δ = 0, we use the rank bound to get

#Dn(A;H, 0) ≪
n−1∑
r=0

Ln,r (A;H) ≪

{
H2n2−n+o(1), if A = Q,

Hn2−n/2+o(1), if A = Z−1.
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Sketch of the proof: given determinant, #Dn(A;H , δ)

When δ ̸= 0, we use Laplace expansion on the first row of a matrix A ∈ Dn(A;H, δ) to get an
equation of the form

n∑
j=1

Qja1,j = Q0,

with a1,j ∈ F(H) or E(H), for j = 1, . . . , n. We then bound the number of solutions of this
equation.
If A = Q, we use a result of Shparlinski (2017) to show that this equation has at most Hn+o(1)

solutions in F(H)n. This implies

#Dn(Q;H, δ) ≪ H2n2−n+o(1).
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A new result on the equation
∑

Qi/xi = Q0

If A = Z−1, the problem of bounding the number of solutions of the previous equation is
equivalent to the following problem, to which we give a new result.

MA, Ostafe, Shparlinski (2023+)

Let (Q0,Q1, . . . ,Qn) ∈ Zn+1 with 1 ≤ |Qi | ≤ HO(1) for i = 1, . . . , n. Then, the equation

n∑
i=1

Qi/xi = Q0,

has at most Hn/2+o(1) solutions (1/x1, . . . , 1/xn) ∈ E(H)n. Furthermore, if Q0 ̸= 0, we
may replace the exponent n/2 + o(1) with n/2− 1/(2n − 2) + o(1)

The proof is based on bounding the number of integer solutions of this equation, with |xi | ≤ H:

lcm(x1, . . . , xn)|Qx1 . . . xn.

This result implies #Dn(Z−1;H, δ) ≪ Hn2−n/2−1/(2n−2)+o(1) for δ ̸= 0
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Matrices with given characteristic polynomial

Let Pn(A;H, f ) = {A ∈ Mn(A;H) : the characteristic polynomial of A is f }.
For integer matrices, we have, from Ostafe and Shparlinski (2022),

#Pn(Z;H, f ) ≪ Hn2−n−1/(n−3)2 if n ≥ 4.

If f splits in Q, then #Pn(Q;H, f ) ≫ Hn2−n.

MA, Ostafe, Shparlinski (2023+)

#Pn(Q;H, f ) ≪

{
H3+o(1), if n = 2,

H2n2−2n, if n ≥ 3.

#Pn(Z−1;H, f ) ≪

{
Ho(1), if n = 2 and f (X ) ̸= X 2,

Hn2−n, if n ≥ 3.

#P2(Z−1;H,X 2) =
24

π2
H log2H + O(H logH).
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Thank you
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