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Counting integer matrices

• Consider a set of matrices M. We would like to count the arithmetic statistics of M; e.g.
the number of matrices in M with a given rank, determinant, or characteristic polynomial.

• There have been a lot of works on the arithmetic statistics of matrices in Mn(Z;H), the
set of n × n integer matrices with entries bounded by H in absolute value.

• For general n, Katznelson (1993), Duke-Rudnick-Sarnak (1994), and Shparlinski (2010)
gave bounds on the number of matrices in Mn(Z;H) with a given determinant ∆.

• However, only Shparlinski’s result is uniform with respect of H and ∆.

• We will present a uniform improvement for the last result in the case n = 2.
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Notes on notations

• We are interested in obtaining the main term of the formulae.

• We use the notation

U = O(V ) ⇐⇒ |U| ≤ cV

for some positive constant c . Also,

U = O(V ) and V = O(U) ⇐⇒ U ≍ V .

• We also write U = V o(1) if, for a fixed ε > 0, V−ε ≤ U ≤ V ε for sufficiently big V .
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Previous results: general n

Dn(H,∆) = #{A ∈ Mn(Z;H) | detA = ∆}.

Katznelson (1993) and Duke-Rudnick-Sarnak (1994)’s results imply that, asymptotically,

Dn(H,∆) ≍

{
Hn2−n, if ∆ ̸= 0,

Hn2−n logH, if ∆ = 0.

However, their results were in a different setting (the matrices are ordered according to ℓ2 norm).
Thus, their results are not uniform with respect of H.
The best uniform bound (for ”any” ∆) is from Shparlinski, who proved

Dn(H,∆) = O(Hn2−n logH).

The main obstacle: there are n2 variables.
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Previous results: n = 2

For n = 2, we only have four variables, with corresponding equation

ad − bc = ∆,

with 0 ≤ |a|, |b|, |c|, |d | ≤ H. More results are known in this case for particular values of ∆.
For ∆ = 0, a quick corollary from Ayyad-Cochrane-Zhang (1996) can be used to obtain

D2(H, 0) =
96

π2
H2 logH + CH2 + O(H19/13 log7/13H),

with C an explicit constant.
The asymptotics for ∆ = 1 is known to Selberg and Newman. Then, Bulinski and
Shparlinski (2022) prove

D2(H, 1) =
96

π2
H2 + O(H5/3+o(1)).

In fact, they proved results on the cardinalities of intersections between modular subgroups of
SL2(Z) with M2(Z;H).
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The main result

We now consider the problem for general ∆, uniformly.

MA (2024+)

Fix an integer ∆ ̸= 0. As H → ∞, we have

D2(H,∆) =
96

π2
H2σ(|∆|)

|∆|
+ O(H5/3+o(1)),

where σ(n) denotes the sum of all positive divisors of n.

We actually proved a stronger result for a fixed ∆ and H. The main steps:

• Algebraic manipulations and case divisions.

• A result from Ustinov (2009) on counting points on a modular hyperbola.

• New lemmas on some summations.
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Preliminary algebraic manipulation

After some algebraic manipulations, we may instead count the number of integer solutions to

ad − bc = ∆,

with 0 < a, |b|, c , d ≤ H and a fixed ∆ > 0. In particular, all variables are nonzero and, except
b, positive.
If we fix c ∈ [1,H], the problem is equivalent to

ad ≡ ∆ (mod c),

with a, d , and
ad −∆

c
= b bounded. This problem is closely related to counting points on a

modular hyperbola.
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Counting points on a modular hyperbola

For a function f and integers U, V , K , q ≥ 1, we would like to count the number of integer
solutions (u, v) of

uv ≡ K (mod q)

with U < u ≤ U + X and 0 < v ≤ f (u). This is the problem of counting points on a modular
hyperbola defined by the function f .
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Ustinov provides a general result for Tf (K , q;U,X ), the number of solutions of uv ≡ K
(mod q), with U < u ≤ U + X and 0 < v ≤ f (u).

Ustinov (2009)

Assume f ’s second derivative satisfies some bounds. We have

Tf (K , q;U,X ) =
1

q

∑
r |K

∑
U<u≤U+X
gcd(u,q)=r

rf (u)− X δq(K )

2
+ E ,

where

|E | ≤ qo(1)(XL−1/3 + q−1D1/2L1/2 + q1/2 + D),

with D = gcd(K , q).

If f is a constant function, the corresponding region is a modular rectangle, for which we have
better results.
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Case divisions

We need to count the number of integral points of

ad ≡ ∆ (mod c),

with 0 < a, d ≤ H and

−H ≤ ad −∆

c
≤ H ⇐⇒ ∆− Hc

a
≤ d ≤ ∆+ Hc

a
.

Hence, d needs to satisfy two different inequalities. There are four possible intervals of d ,
depending on the size of a and c.
Thus we have four cases: small a large c , small a small c , large a large c and large a small c.
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From determinant to modular hyperbola

One of the cases is the ”large a, large c” case: counting the number of integral points of

ad ≡ ∆ (mod c),

with ∆/H + c < a ≤ H, ∆/H < c ≤ H. In this case, we have

∆− Hc

a
< 0 < d ≤ ∆+ Hc

a
< H =⇒ 0 < d ≤ ∆+ Hc

a
.

Hence, our case is equivalent to counting the integral points on a modular hyperbola defined by

the function f+(x) =
∆+ Hc

x
.
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Applying Ustinov’s result, the number of solutions of ad ≡ ∆ (mod c) for a fixed c with
∆/H + c < a ≤ H, 0 < d ≤ f+(a) is

cH +∆

c

∑
r |∆

∑
∆/H+c<a≤H
gcd(a,c)=r

r

a
−
(
H − ∆

H
− c

)
δc(∆)

2
+ E3(c),

for some error term E3(c).
Hence, adding all possible values of c with ∆/H < c ≤ H, the number of solutions of ad ≡ ∆
(mod c) in the interval ∆/H + c < a ≤ H, ∆/H < c ≤ H is

H
∑
r |∆

∑
∆/H+c<a≤H
∆/H<c≤H
gcd(a,c)=r

r

a
+∆

∑
r |∆

∑
∆/H+c<a≤H
∆/H<c≤H
gcd(a,c)=r

r

ac
+ O(H5/3+o(1)).

We repeat these calculations for other possible intervals of a and c . The corresponding region in
each case can be modular rectangle, modular hyperbola, or some union of them. We add all
terms from these cases to conclude the division.
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Back to the original equation

Adding over all possible intervals of a and c , the number of integer solutions (a, b, c , d) to

ad − bc = ∆

with 0 < a, |b|, c, d ≤ H is

H
∑
r |∆


∑

0<a≤c+∆/H
0<c≤H

gcd(a,c)=r

r

c
+

∑
∆/H+c<a≤H

0<c≤H
gcd(a,c)=r

r

a
+

∑
0<a≤H

0<c≤∆/H
gcd(a,c)=r

r

a


+ O

(
∆

∑
r |∆

∑
0<a,c≤H
gcd(a,c)=r

r

ac

)
+ O(H5/3+o(1))

How to simplify these four summations?
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A new summation result

MA (2024+)

Let X ,Y ≥ 0 and r be a positive integer. We have∑
0<y<x+Y
0<x≤X

gcd(x ,y)=r

r

x
=

6

π2

(
X

r
+

Y

r
log

X

r

)
+ O

(
Y

r

)
+ O

(
log2

X

r

)
.

Sketch of proof: substituting x = rx ′, y = ry ′, switching the order of summations, and using the
asymptotic ∑

0<x≤X

φ(x)

x
=

1

ζ(2)
=

6

π2
.

We also have similar results for the other summations in the previous slide, proven similarly.
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Applying the summation lemmas

For a fixed H and ∆ ̸= 0, as H,∆ → ∞, the number of integer solutions (a, b, c , d) to

ad − bc = ∆

with 0 < a, |b|, c , d ≤ H is

12

π2
H2

∑
r |∆
r≤H

1

r
+ O(Ho(1)max(H5/3,∆)).

To complete the proof of the main result, we consider the other signs of a, c , d and count them
accordingly.
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MA (2024+)

Fix integers H, ∆ ̸= 0. As H,∆ → ∞, we uniformly have

D2(H,∆) =
96

π2

σ(|∆|)
|∆|

H2 + O(Ho(1)max(H5/3,∆)),

where σ(n) denotes the sum of all positive divisors of n.

The last result gives a uniform formula of D2(H,∆) if 0 < |∆| ≤ H2−ε, for every ε > 0. If
|∆| > H2−ε, the result only implies

D2(H,∆) = O(H2+o(1)),

which is already known from Shparlinski.
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Other work for general ∆

With more sophisticated tools from automorphic froms and character sums, Guria and Ganguly
(2024+) prove

D2(H,∆) =
96

π2

σ(|∆|)
|∆|

H2 +

{
O(H3/2+7/64+o(1)), if 0 < |∆| ≪ H1/3,

O(H5/3 + o(1)), if H1/3 < |∆| ≪ H5/3.

Compared to our result, they have better error bounds, but smaller intervals of |∆|.
Also, their methods can be used for giving results on counting 2× 2 integer matrices with other
restrictions, such as when some of the entries are primes or the matrices have fixed
characteristic polynomials.
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Further with more variables

Another extension of this problem is to consider the equation

x1x2 . . . xn − y1y2 . . . yn = ∆,

with |xi |, |yi | ≤ H. For the case ∆ = 0, we have results for Munsch-Shparlinski (2015).
Another direction for the case ∆ = 0 is to count the number of solutions of

x1x2 = x3x4 = · · · = x2n−1x2n

with |xi | ≤ H. Mastrostefano (2021, unpublished) obtained the correct order of this quantity.
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These two equations may be generalised further as follows: Let k ,m > 1 be integer, and
consider the equation

x1,1 . . . x1,m = · · · = xk,1 . . . xk,m (1)

A recent work of MA with fellow PhD student in UNSW, Chandler C. Corrigan, provides a new
bound for counting solutions to this equation.

MA-Corrigan (2025+)

Let E (H) be number of integer solutions to (1) with 0 < xi ,j ≤ H. As H → ∞, we have

E (H) = qm,kH
m(logH)m

k−(m−1)k−1 + HmPm,k(logH) + o(Hm−ϑm,k ),

with Pm,k is a polynomial of degree not exceeding mk − (m − 1)k − 2, ϑm,k > 0 and

qm,k = Vm,k

∏
p

(1− p−1)m
k
∑
n⩾0

1

pn

(
n +m − 1

m − 1

)k
,

where Vm,k is the volume of a mk -dimensional box.
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Thank you

M. Afifurrahman, ‘A uniform formula on the number of integer matrices with given determinant
and height’, Preprint, 2024, available from https://arxiv.org/abs/2407.08191.

M. Afifurrahman, C. C. Corrigan ‘Solutions to multiplicative Diophantine equations in
orthotopes’, Preprint, 2025, available from https://arxiv.org/abs/2501.15372.
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